#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/matrix_expression.hpp>
#include <iostream>
#include <fstream>
#include <vector>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/lu.hpp>
Go to the source code of this file.
Functions |
template<typename M > |
bool | InvertMatrix (const M &input, M &inverse) |
template<class T > |
boost::numeric::ublas::matrix< T > | gjinverse (const boost::numeric::ublas::matrix< T > &m, bool &singular) |
| Invert a matrix via gauss-jordan algorithm (PARTIAL PIVOT)
|
Function Documentation
template<typename M >
bool InvertMatrix |
( |
const M & |
input, |
|
|
M & |
inverse |
|
) |
| |
Definition at line 32 of file MatrixInverse.hpp.
References A.
{
using namespace boost::numeric::ublas;
typedef permutation_matrix<std::size_t> pmatrix;
int res = lu_factorize(
A,pm);
if( res != 0 ) return false;
inverse.assign(identity_matrix<typename M::value_type>(
A.size1()));
return true;
}
template<class T >
boost::numeric::ublas::matrix<T> gjinverse |
( |
const boost::numeric::ublas::matrix< T > & |
m, |
|
|
bool & |
singular |
|
) |
| |
Invert a matrix via gauss-jordan algorithm (PARTIAL PIVOT)
- Parameters:
-
m | The matrix to invert. Must be square. |
singular | If the matrix was found to be singular, then this is set to true, else set to false. |
- Returns:
- If singular is false, then the inverted matrix is returned. Otherwise it contains random values.
Definition at line 70 of file MatrixInverse.hpp.
References A, and k.
{
using namespace boost::numeric::ublas;
const size_t size = m.size1();
if (size != m.size2() || size == 0)
{
singular = true;
}
if (size == 1)
{
if (m(0,0) == 0.0)
{
singular = true;
}
singular = false;
}
matrix<T>
A(size, 2*size);
matrix_range<matrix<T> > Aleft(
A,
range(0, size),
range(0, size));
Aleft = m;
matrix_range<matrix<T> > Aright(
A,
range(0, size),
range(size, 2*size));
Aright = identity_matrix<T>(size);
for (
size_t k = 0;
k < size;
k++)
{
for (size_t kk = 0; kk < size; kk++)
{
{
int l = -1;
for (size_t i = kk+1; i < size; i++)
{
{
l = i;
break;
}
}
if ( l < 0 )
{
std::cerr << "Error:" << __FUNCTION__ << ":"
<< "Input matrix is singular, because cannot find"
<< " a row to swap while eliminating zero-diagonal.";
singular = true;
return Aleft;
}
else
{
matrix_row<matrix<T> > rowk(
A, kk);
matrix_row<matrix<T> > rowl(
A, l);
rowk.swap(rowl);
}
}
}
for (
size_t j =
k+1; j < 2*size; j++)
for (size_t i = 0; i < size; i++)
{
{
{
for (
size_t j =
k+1; j < 2*size; j++)
A(i,j) -=
A(
k,j) *
A(i,
k);
}
}
}
}
singular = false;
return Aright;
}