ProteoWizard
MatchedFilter.hpp
Go to the documentation of this file.
1 //
2 // $Id: MatchedFilter.hpp 1195 2009-08-14 22:12:04Z chambm $
3 //
4 //
5 // Original author: Darren Kessner <darren@proteowizard.org>
6 //
7 // Copyright 2007 Spielberg Family Center for Applied Proteomics
8 // Cedars Sinai Medical Center, Los Angeles, California 90048
9 //
10 // Licensed under the Apache License, Version 2.0 (the "License");
11 // you may not use this file except in compliance with the License.
12 // You may obtain a copy of the License at
13 //
14 // http://www.apache.org/licenses/LICENSE-2.0
15 //
16 // Unless required by applicable law or agreed to in writing, software
17 // distributed under the License is distributed on an "AS IS" BASIS,
18 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19 // See the License for the specific language governing permissions and
20 // limitations under the License.
21 //
22 
23 
24 #ifndef _MATCHEDFILTER_HPP_
25 #define _MATCHEDFILTER_HPP_
26 
27 
29 #include <iostream>
30 #include <vector>
31 #include <iterator>
32 #include <algorithm>
33 #include <complex>
34 #include <limits>
35 
36 
37 namespace pwiz {
38 namespace math {
39 namespace MatchedFilter {
40 
41 
42 template <typename X, typename Y>
44 {
45  typedef X abscissa_type;
46  typedef Y ordinate_type;
47 };
48 
49 
52 
53 
54 template <typename space_type>
56 {
57  typedef typename space_type::abscissa_type abscissa_type;
58  typedef typename space_type::ordinate_type ordinate_type;
59  typedef std::pair<abscissa_type,abscissa_type> domain_type;
60  typedef std::vector<ordinate_type> samples_type;
61 
64 
66  {
67  return domain.second - domain.first;
68  }
69 
70  abscissa_type dx() const
71  {
72  return samples.empty() ? 0 : domainWidth()/(samples.size()-1);
73  }
74 
75  abscissa_type x(typename samples_type::size_type index) const
76  {
77  return domain.first + domainWidth() * index / (samples.size()-1);
78  }
79 
80  typename samples_type::size_type sampleIndex(const abscissa_type& x) const
81  {
82  typename samples_type::size_type sampleCount = samples.size();
83  int result = (int)round((sampleCount-1)*(x-domain.first)/domainWidth());
84  if (result < 0) result = 0;
85  if (result > (int)(sampleCount-1)) result = sampleCount-1;
86  return (typename samples_type::size_type)(result);
87  }
88 
90  {
91  return samples[sampleIndex(x)];
92  }
93 };
94 
95 
96 template <typename space_type>
97 std::ostream& operator<<(std::ostream& os, const SampledData<space_type>& data)
98 {
99  os << "[" << data.domain.first << "," << data.domain.second << "] "
100  << "(" << data.samples.size() << " samples)\n";
101 
103  for (unsigned int index=0; index!=data.samples.size(); ++index, ++it)
104  os << data.x(index) << "\t" << *it << std::endl;
105 
106  return os;
107 }
108 
109 
110 template <typename Kernel>
112 {
113  // When using a kernel function of type Kernel,
114  // KernelTraitsBase<Kernel> must define space_type,
115  // which in turn must define abscissa_type and ordinate_type, e.g:
116  // typedef ProductSpace<X,Y> space_type;
117 
118  // As a shortcut, the following default typedef allows a client to
119  // define space_type in the definition of Kernel:
120  typedef typename Kernel::space_type space_type;
121 };
122 
123 
124 // partial specialization of KernelTraitsBase for function pointers
125 template <typename X, typename Y>
126 struct KernelTraitsBase<Y(*)(X)>
127 {
129 };
130 
131 
132 namespace {
133 
134 template <typename Kernel>
135 struct KernelConcept
136 {
137  void check()
138  {
139  y = k(x);
140  }
141 
142  typename KernelTraitsBase<Kernel>::space_type::abscissa_type x;
143  typename KernelTraitsBase<Kernel>::space_type::ordinate_type y;
144  Kernel k;
145 };
146 
147 }
148 
149 template <typename Kernel>
151 {
152  // force compile of KernelConcept::check()
153  void (KernelConcept<Kernel>::*dummy)() = &KernelConcept<Kernel>::check;
154  (void)dummy;
155 }
156 
157 
158 template <typename Y>
160 {
162  double e2;
163  double tan2angle;
164 
165  Correlation(Y _dot = 0, double _e2 = 0, double _tan2angle = 0)
166  : dot(_dot), e2(_e2), tan2angle(_tan2angle)
167  {}
168 
169  double angle() const {return atan(sqrt(tan2angle))*180/M_PI;}
170 };
171 
172 
173 template<typename Y>
174 std::ostream& operator<<(std::ostream& os, const Correlation<Y>& c)
175 {
176  os << "<" << c.dot << ", " << c.e2 << ", " << c.angle() << ">";
177  return os;
178 }
179 
180 
181 template <typename Kernel>
183 {
185  typedef typename space_type::abscissa_type abscissa_type;
186  typedef typename space_type::ordinate_type ordinate_type;
187 
194 
195  // verify Kernel concept at compile time
196  template <void(*T)()> struct Dummy;
197  typedef Dummy< &checkKernelConcept<Kernel> > dummy;
198 };
199 
200 
201 namespace details {
202 
203 
204 template <typename Kernel>
206 createFilter(const Kernel& kernel,
207  int sampleRadius,
210 {
211  checkKernelConcept<Kernel>();
212 
213  typename KernelTraits<Kernel>::filter_type filter;
214  for (int i=-sampleRadius; i<=sampleRadius; i++)
215  filter.push_back(kernel(i*dx - shift));
216  return filter;
217 }
218 
219 
220 // mimic complex<> functions
221 inline double norm(double d) {return d*d;}
222 inline double conj(double d) {return d;}
223 
224 
225 template <typename Filter>
226 void normalizeFilter(Filter& filter)
227 {
228  double normalization = 0;
229  for (typename Filter::const_iterator it=filter.begin(); it!=filter.end(); ++it)
230  normalization += norm(*it);
231  normalization = sqrt(normalization);
232 
233  for (typename Filter::iterator it=filter.begin(); it!=filter.end(); ++it)
234  *it /= normalization;
235 }
236 
237 
238 template <typename Kernel>
239 std::vector<typename KernelTraits<Kernel>::filter_type>
240 createFilters(const Kernel& kernel,
241  int sampleRadius,
242  int subsampleFactor,
244 {
245  checkKernelConcept<Kernel>();
246 
247  typedef typename KernelTraits<Kernel>::filter_type filter_type;
248  std::vector<filter_type> filters;
249 
250  for (int i=0; i<subsampleFactor; i++)
251  filters.push_back(createFilter(kernel, sampleRadius, dx, dx*i/subsampleFactor));
252 
253  for_each(filters.begin(), filters.end(), normalizeFilter<filter_type>);
254 
255  return filters;
256 }
257 
258 
259 template<typename Kernel>
260 void
265 {
266  checkKernelConcept<Kernel>();
267  result.dot = 0;
268  double normData = 0;
269 
270  for (; samples!=samplesEnd; ++samples, ++filter)
271  {
272  result.dot += (*samples) * conj(*filter);
273  normData += norm(*samples);
274  }
275 
276  double normDot = norm(result.dot);
277  result.e2 = (std::max)(normData - normDot, 0.);
278  result.tan2angle = normDot>0 ? result.e2/normDot : std::numeric_limits<double>::infinity();
279 }
280 
281 
282 } // namespace details
283 
284 
285 template<typename Kernel>
286 typename KernelTraits<Kernel>::correlation_data_type
288  const Kernel& kernel,
289  int sampleRadius,
290  int subsampleFactor)
291 {
292  checkKernelConcept<Kernel>();
293 
294  typedef typename KernelTraits<Kernel>::correlation_data_type result_type;
295  result_type result;
296 
297  result.domain = data.domain;
298  if (data.samples.empty()) return result;
299  result.samples.resize((data.samples.size()-1) * subsampleFactor + 1);
300 
301  typedef typename KernelTraits<Kernel>::filter_type filter_type;
302  std::vector<filter_type> filters = details::createFilters(kernel,
303  sampleRadius,
304  subsampleFactor,
305  data.dx());
306 
307  typedef typename KernelTraits<Kernel>::samples_type samples_type;
308 
309  unsigned int sampleIndex = sampleRadius;
310  for (typename samples_type::const_iterator itData = data.samples.begin() + sampleRadius;
311  itData + sampleRadius != data.samples.end(); ++itData, ++sampleIndex)
312  for (unsigned int filterIndex=0; filterIndex<filters.size(); ++filterIndex)
313  {
314  unsigned int index = sampleIndex * filters.size() + filterIndex;
315 
316  if (index >= result.samples.size()) // only when sampleRadius==0, filterIndex>0
317  break;
318 
319  details::computeCorrelation<Kernel>(itData-sampleRadius, itData+sampleRadius+1,
320  filters[filterIndex].begin(),
321  result.samples[index]);
322  }
323 
324  return result;
325 }
326 
327 
328 } // namespace MatchedFilter
329 } // namespace math
330 } // namespace pwiz
331 
332 
333 #endif // _MATCHEDFILTER_HPP_
334